A New Diketone Synthesis via Alkylation of Bisdiazo-ketones with Trialkylboranes

By John Hooz* and Donald M. Gunn (Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada)

We have reported novel syntheses of ketones, nitriles, and esters by treatment of organoboranes with diazo-compounds.¹

Here we report the smooth alkylation of bisdiazo-ketones (I) with organoboranes to give the symmetrical diketones (II). The bisdiazoketones are prepared by treatment of diacyl chlorides with diazomethane.⁸

$$\begin{array}{c} \text{N}_2\text{CH} \cdot \text{CO} \cdot \left[\text{CH}_2\right]_{\mathfrak{g}} \cdot \text{CO} \cdot \text{CHN}_2 + \text{R}_3\text{B} \xrightarrow{-\text{N}_3} \\ & + \text{H}_2\text{O} \\ \\ \text{(I)} \\ & \text{RCH}_2 \cdot \text{CO} \cdot \left[\text{CH}_2\right]_{\mathfrak{g}} \cdot \text{CO} \cdot \text{CH}_2\text{R} \\ \\ & \text{(II)} \end{array}$$

The method is illustrated (Table) for the synthesis of 1,4-and 1,5-diketones (II; n = 2,3).

Since 1,4- and 1,5-diketones undergo base-catalyzed

intramolecular cyclization to cyclopentenones and cyclohexenones, respectively, we have synthesed these cycloalkenones in one preparative step by employing alkaline conditions of hydrolysis. The crude mixture from reaction of bis-1,6-diazohexane-2,5-dione (I; n=2) and triethylborane, on treatment with hot aqueous potassium hydroxide afforded an 2-ethyl-3-n-propylcyclopent-2-enone (87%); similar treatment of the reaction mixture derived from (I; n=3) with Et₃B gave 2-ethyl-3-n-propylcyclohex-2-enone (96%).

An attempt to prepare unsymmetrical diketones by this method was unsuccessful. Successive treatment of bis-1,7-diazoheptane-2,6-dione with triethylborane (quantitative nitrogen evolution) gave a mixture of the three possible diketones.

We thank the National Research Council of Canada for financial support of this research and for a postdoctoral fellowship (to D. M. G.).

Reaction of bisdiazoketones with trialkylboranes*

$R_{\mathfrak{z}}B^{\mathfrak{b}}$ (mol.)		Bisdiazoketone (I) (mol.)		Product ^c	Yield (%)	
Et (20)			2	(9.8)	Decane-4,7-dione	92
$\mathbf{Bu}^{\mathbf{n}}$ (20)			2	(9.7)	Tetradecane-6,9-dione	84
Et (22)			3	(Ì0·5)	Hendecane-4,8-dione	87
Bun (20)			3	`(9·5)	Pentadecane-6,10-dione	83
n-hexyl (20)		3	(8.5)	Nonadecane-8,12-dione	52

• All reactions performed at 25° in tetrahydrofuran as solvent. Nitrogen yields were quantitative except in the case of trihyexlborane (78%); b organoboranes were prepared by hydroboration of the corresponding alkene (H. C. Brown, "Hydroboration," W. A. Benjamin, New York, 1962), except for Et₂B which was purchased from Alfa Inorganics, Inc; c correct elemental analyses and compatible spectral data were obtained for all new compounds; d yields by g.l.p.c. analysis.

(Received, December 9th, 1968; Com. 1687.)

¹ J. Hooz and S. Linke, J. Amer. Chem. Soc., 1968, 90, 5936, 6891. ³ E. Fahr, Annalen, 1960, 638, 1.